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So far we have introduced and investigated the idea of the limit in 
case of sequences. Sequences are functions with the argument n
in ℕ, which means we study limits of rather specific functions 
and only when the argument approaches infinity. We will now 
generalize the idea to all real functions and we allow the 
argument to approach any value, infinite or not.



Take any convergent sequence (an) with lim
𝑛→∞

𝑎n = L and ask what 

happens if we apply some function f to all term of the sequence? 

Obviously we get a new sequence, f(an) which may be convergent 

to some number P or divergent to + or – infinity, or just divergent, 

depending on the function. So, this question is more about the 

function f than about the sequence (an).



Definition. (Heine)
A number L is the limit of a function f at x=c (or as x approaches 
c), iff for every sequence (xn) convergent to c and such that for 
every n, xnc, the sequence f(xn) is convergent to L.

In a more formal way:

lim
x→c

f x = L 

(∀(xn) ∈ (ℝ \ {c})ℕ ) ( lim
𝑛→∞

𝑥𝑛 = 𝑐 ⇒ lim
𝑛→∞

𝑓(𝑥𝑛) = 𝐿 )

Look at the expression (∀(xn) ∈ (ℝ \ {c})ℕ ). The “∀(xn)” part 
means “for every sequence (xn)” , (xn) is the symbol we use for 
sequence consisting of terms x1,x2, … etc. 

The “(ℝ \ {c})ℕ” part means we only consider sequences whose 
terms are all different from c.



Definition. (Augustin-Louise Cauchy)
Let f be a real function and let c,Lℝ. We say that L is the limit 
of f, as x approaches c, iff

(∀ε > 0)(∃δ > 0)(∀x∈ ℝ)( 0<|x − c|<δ ⇒ |f(x) − L|<ε ).

We write then lim
x→c

f x = L.
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Notice that the part “0<| x − c |” means we do not require that 

c∈Dom(f). In fact we are NOT interested in the value of f for x=c, 

we do not even assume it exists.

This definition of the limit is called ε – δ (Cauchy) definition as 

opposed to the sequence (Heine) definition.



FAQ.
Can we illustrate graphically the Heine definition?

Answer.

No.



But let’s try anyway.

Where are n – s?
Where are xn – s?
Where are f(xn) – s?



Theorem.
The two definitions of the limit of a function are equivalent i.e., a 
number L is the limit of f at some point c in the sense of Cauchy 
iff the number is the limit of f at c in the sense of Heine.

Bonus question. Fully correct and original proof will earn you 3 points, a proof 

suspected of being somebody else’s minus one point, an honest attempt showing some 
understanding of the task one point. Submit your answers not later than Tuesday before 
6pm.



Example 1. Find lim
x→0

𝑠𝑖𝑛
1

x
if it exists.

We use Heine definition:
First let xn =

1

2nπ+
π

2

. Then, lim
n→∞

𝑠𝑖𝑛 𝑥𝑛 = lim
𝑛→∞

𝑠𝑖𝑛 2𝑛π +
π

2
= 

lim
𝑛→∞

1 = 1. 

Now use another sequence, 𝑎𝑛 =
1

2𝑛π−
π

2

. In this case , lim
𝑛→∞

𝑠𝑖𝑛 𝑎𝑛

= lim
𝑛→∞

𝑠𝑖𝑛 2𝑛π −
π

2
=  lim

𝑛→∞
(−1) =  −1.

We conclude that the function 𝑠𝑖𝑛
1

𝑥
has no limit at 0 because we 

have found two sequences convergent to 0, (xn) and (an), and the 

limits of corresponding sequences of values of f differ.



Example 2. Find lim
x→0

x2 sin
1

x
, if it exists.

We will use Cauchy definition to show that lim
x→0

x2 sin
1

x
= 0 .

Let ε be a positive real number. We must find a positive number δ 

such that  0 < |x −  0| < δ implies x2 sin
1

x
− 0 < ε. Since for 

every x0 sin
1

x
≤ 1 we have x2 sin

1

x
≤ x2. So, if we choose 

δ = ε we will get x2 sin
1

x
≤ x2 < ε 2 = ε as required.

Notice that we are not bothered by the fact that sin
1

x
is undefined 

for x=0



FAQ.

1. In example 1, how to find such two sequences? 
There is no useful answer to this question other than the 
usual, boring one – practice, practice, practice …

2. How do I know whether I should try to show that the 
function has or that it does not have a limit at a point?
The same boring answer.

3. Does example 2 indicate that we should try to find some 
sort of rule which assigns a delta to an epsilon?
Yes, exactly. It does not have to be a function, though. Any
 such that 0 < δ ≤ ε will do.

4. Sometimes you say number sometimes point. What is the 
difference?
None, in this context. Every point on the real axis is a 
number and every number is a point on the real axis.



Limits involving infinity 
1. Limits at infinity.

Definition.
For a function f(x), a number L is the limit of f as x approaches infinity iff

(Cauchy) ∀ε > 0 ∃c ∈ ℝ ∀x ∈ ℝ x > c ⇒ f(x) − L < ε

(Heine) for every sequence (xn): lim𝑛→∞
𝑥𝑛 = ∞ ⇒ lim

𝑛→∞
f(𝑥𝑛) = 𝐿

In a similar way we define the limit of f as x approaches minus infinity.
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Limits involving infinity 
2. Infinity as the limit.

Definition.
For a function f(x), and a point c we say lim

𝑥→𝑐
𝑓(𝑥) = ∞ iff

(Cauchy) ∀M ∈ ℝ ∃ > 0 ∀x ∈ 𝐷𝑜𝑚(𝑓) x − c <  ⇒ 𝑓 𝑥 > 𝑀

(Heine) for every sequence (xn), lim𝑛→∞
𝑥𝑛 = 𝑐 ⇒ lim

𝑛→∞
𝑓(𝑥𝑛) = ∞

In a similar way we define lim
𝑥→𝑐

𝑓 𝑥 = −∞

The example from Wikipedia.

lim
𝑥→0+

log2 𝑥 = −



We switch to the old presentation here



Subsequences re-revisited. 

Let (an) be a sequence, which means (an) is a function a : ℕ → ℝ. 
Take another sequence, say (bn), i.e. another function b : ℕ → ℕ
and assume that  b is increasing. Then a ○ b is a subsequence of 

an, namely 𝑎𝑏𝑛 = 𝑎𝑏1 , 𝑎𝑏2 , … , 𝑎𝑏𝑛 , … . 

If we drop the monotonicity requirement for b then we do NOT 
get, strictly speaking, a subsequence of a but we do get a 
sequence consisting of (some) terms of the original sequence, 
perhaps only finitely many, perhaps arranged in a messy order.

This means that, from the point of view of the limit, the 
construction is useless, unless … Unless we assume that the 
sequence b diverges to ∞. 



Theorem. (Subsequence theorem generalized)
Let a = (an) be a sequence. Then lim

𝑛→∞
𝑎(𝑛) = L iff 

for every sequence b=(bn) such that lim
𝑛→∞

𝑏(𝑛) = ∞, we have 

lim
𝑛→∞

(𝑎 ○ 𝑏)(𝑛) = L.

Proof. () Comprehension test.

() Challenging comprehension test. Fully correct and original proof 

gives you 3 points, a proof suspected of being somebody else’s - minus one point, an 
honest attempt showing some understanding of the task - one point. Submit your 
answers not later than Tuesday 6pm.



If we temporarily introduce a silly symbol x ∞ = lim
𝑛→∞

𝑥 for 

every sequence x = (xn), convergent, or divergent to ∞, then our 

theorem can be written as, still silly looking,

lim
𝑛→∞

(𝑎 ○ 𝑏)(𝑛) = a(b()). 

One can think about this theorem in term of properties of limits 

of sequences. It looks like “the limit of a composition of two 

sequences is the ‘composition of limits’” – with the additional 

condition that the limit of the “inner” sequence is .


